Support Recovery for Sparse Deconvolution of Positive Measures
نویسندگان
چکیده
We study sparse spikes deconvolution over the space of Radon measures when the input measure is a finite sum of positive Dirac masses using the BLASSO convex program. We focus on the recovery properties of the support and the amplitudes of the initial measure in the presence of noise as a function of the minimum separation t of the input measure (the minimum distance between two spikes). We show that when ‖w‖2 /λ, ‖w‖2 /t 2N−1 and λ/t2N−1 are small enough (where λ is the regularization parameter, w the noise and N the number of spikes), which corresponds roughly to a sufficient signal-to-noise ratio and a noise level small enough with respect to the minimum separation, there exists a unique solution to the BLASSO program with exactly the same number of spikes as the original measure. We show that the amplitudes and positions of the spikes of the solution both converge toward those of the input measure when the noise and the regularization parameter drops to zero faster than t2N−1.
منابع مشابه
Sparse Spikes Deconvolution on Thin Grids
This article analyzes the recovery performance of two popular finite dimensional approximations of the sparse spikes deconvolution problem over Radon measures. We examine in a unified framework both the l regularization (often referred to as Lasso or Basis-Pursuit) and the Continuous Basis-Pursuit (C-BP) methods. The Lasso is the de-facto standard for the sparse regularization of inverse proble...
متن کاملExact Support Recovery for Sparse Spikes Deconvolution
This paper studies sparse spikes deconvolution over the space of measures. For non-degenerate sums of Diracs, we show that, when the signalto-noise ratio is large enough, total variation regularization (which the natural extension of ` norm of vector to the setting of measures) recovers the exact same number of Diracs. We also show that both the locations and the heights of these Diracs converg...
متن کاملSparse Image Deconvolution with Message Passing
We introduce an approximate message passing (AMP) algorithm for the problem of image deconvolution. The recovery problem is formulated in Bayesian terms, and uses sparse statistical priors for estimating the minimum-mean-squared-error solution. Our setting differs from previous investigations where AMP was considered for sparse signal recovery from random or Fourier measurements. AMP is incompa...
متن کاملA Sharp Sufficient Condition for Sparsity Pattern Recovery
Sufficient number of linear and noisy measurements for exact and approximate sparsity pattern/support set recovery in the high dimensional setting is derived. Although this problem as been addressed in the recent literature, there is still considerable gaps between those results and the exact limits of the perfect support set recovery. To reduce this gap, in this paper, the sufficient con...
متن کاملSparse Deconvolution Using Support Vector Machines
Sparse deconvolution is a classical subject in digital signal processing, having many practical applications. Support vector machine (SVM) algorithms show a series of characteristics, such as sparse solutions and implicit regularization, which make them attractive for solving sparse deconvolution problems. Here, a sparse deconvolution algorithm based on the SVM framework for signal processing i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1506.08264 شماره
صفحات -
تاریخ انتشار 2015